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The theory of the tunnelling of waves through a barrier in which the square of the
effective refractive index is zero at one boundary and infinite at or near the other is
studied. An infinity of the refractive index is called a resonance and so we speak of
resonance tunnelling. The sum of the powers in the reflected and transmitted waves is
less than the power in the incident wave even in a loss free system where there is no
mechanism for the absorption of energy. A formal proofis given that there must be such
a disappearance of energy, associated with the solution of the governing equations that
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406 K.G.BUDDEN

is singular at the resonance. The problem of what has happened to the lost energy is
discussed. Some previous treatments dealt only with normally incident waves, but this
is a degenerate case. The theory is extended to include oblique incidence and some new
features are revealed. Some specific examples are worked out as illustrations.

1. INTRODUCTION

The propagation of waves normally incident on a stratified medium is conveniently described
by the refractive index u. For obliquely incident waves g is replaced by a quantity ¢, —q,
explained later, but for the present # will be used as though it applies for both oblique and
normal incidence. In a loss free system where 42 is positive the waves are propagated with a
real phase velocity, and where #? is negative they are evanescent. A region where u? is negative is
sometimes called a ‘barrier’ or forbidden region, but it is well known that some wave energy can
tunnel through. In the most familiar kind of barrier the boundaries are where x2 is zero. But it is
also possible for one or both boundaries to be where #2 is infinite (figure 1¢). In the present paper
we study the case where one boundary has #2? = 0 and the other is at or near where #2 = 00. The
situation where u -> 0o is sometimes called a resonance, especially in plasma physics, and so we
speak of resonance tunnelling. The case where #? = oo at both boundaries of a barrier can occur
and some aspects of it have been studied (Tang, Wong & Caron 1975) but it is not considered
further here.

When a wave is incident on a loss free stratified system containing a resonance, it is found that
the sum of the energy fluxes in the transmitted and reflected waves is less than the energy flux in
the incident wave, even though there is no mechanism for the absorption of energy. Thus there is
an apparent loss of energy and it is an intriguing physical problem to explain what has happened
to it. Interesting discussions have been given by Stix (1962) and by Ngan & Swanson (1977).
A similar effect has been found in the theory of the oscillations of the Earth’s magnetosphere,
giving magnetic micropulsations. There is a disappearance of energy near the resonant lines of
force, and Southwood (1974) and Chen & Hasegawa (1974) have pointed out that the governing
differential equations are similar to those for the radio propagation problem.

This general problem was discussed in a previous paper (Budden 1954). The theory was
repeated with amendments in a text book (Budden 1961), and since frequent references to this
will be needed, it will here be referred to as R.w.i., the initials of its title. This early treatment
considered only the degenerate case of normally incident waves, and could thus be used only
for an incident wave of infinite lateral extent. Any wave of bounded lateral extent, coming from
a source of limited size, can be expressed as an angular spectrum of plane waves (Clemmow 1966)
and in a full treatment it is necessary to consider the obliquely incident component plane waves.

The purpose of the present paper, therefore, is twofold. First it examines the basic theory for
a loss free medium so as to throw further light on the physical mechanism by which energy is
apparently lost. Second it deals with obliquely incident waves and shows how this more general
case is related to the special case of normal incidence.

Asin the earlier treatment in R.w.i., this paper is concerned almost entirely with cold plasma.
The notation and the type of medium used are explained in § 2. Section 3 sets out the governing
differential equations for the electromagnetic field components. It introduces the idea of the
adjoint fields and the adjoint differential equation. These were examined recently by Suchy &
Altman (1975) and have proved to be a most valuable tool in the present study. Series solutions
are found in §4 and it is shown that, for obliquely incident waves there is one solution that is
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RESONANCE TUNNELLING 407

singular at the resonance. For normal incidence this solution ceases to be singular and is no
longer an independent solution. The construction of a solution which is uniformly independent,
and singular at the resonance, whether or not the incidence is normal, is presented in § 5. Section 6
gives the formal proof that this solution must lead to a disappearance of some energy at the
resonance, even when there is no mechanism for absorbing energy. Section 7 uses a simple
example from R.w.i. (§21.14) to illustrate this. Up to this point the study has been mainly con-
cerned with the resonance, whether or not there is a wave barrier. The concept of a barrier is
used in the context of characteristic waves or modes introduced in §8. The problem is now
conveniently tackled by using coupled wave equations, §9. A model for use with these
equations is described in § 10. Section 11 examines how the properties of a single coupling point
are modified when there is a resonance near it. The full problem of a barrier with a resonance
beyond one of its boundaries is studied in § 12. Finally in § 13 there is a discussion of what happens
to the energy that is apparently lost near a resonance.

2. NOTATION AND DESCRIPTION OF THE MODEL

A Cartesian coordinate system x, y, z is used with the z axis perpendicular to the cold stratified
plasma. Instead of z it is convenient to use the dimensionless variable

s=kz, k=w/c, (1)

where o is the angular frequency and ¢ is the speed of light. There is a superimposed constant
magnetic field whose direction cosines are —/, —m, —n. The properties of the plasma are given
by the ‘principal axis’ values €,, €, €; (the same as L, R, P used by Stix 1962) obtained when the
dielectric constant tensor ¢ is diagonalized by the use of complex principal axes (Westfold 1949).
When the plasma contains several species of ion, €, €,, €5 are each expressed as a sum over species,
given for example by Stix (1962), Budden & Smith (1974). They are functions of s only. The range
of s where they vary appreciably is assumed to be limited so that they each tend to a constant
value when s tends to a large positive or negative real value. When, as here, losses by collisions or
other damping processes are ignored, €;, €,, €5 are all real and bounded when s is real. They are
assumed to be continuous analytic functions of 5, and ‘slowly varying’ in a sense to be explained
fater, 39 Let G =i(te) e D=iei—e). &)
D is the same as used by Stix (1962). Then in the Cartesian system it can be shown that the
dielectric constant tensor is

(e, +e€,) — G —ImG—inD —InG +imD
e=| —ImG+inD  }(e;+6) —m*G  —mnG—ilD |. (3)
—InG —imD —mnG+ilD (e + €) —n®G

If the direction of the superimposed magnetic field is reversed, /, m, n all change sign and & is then
replaced by its complex conjugate which is the same as its transpose, since it is Hermitian for a
loss free medium.

The theory in R.w.i. was treated in the context of the ionosphere regarded as a cold electron
plasma. In that special case

= —XYV/{U(U2-Y?)}, D=-XY/(U?- y2),} "
Ley +e,) = 1—UX/(U2—T?), U=1-iZ,

39-2
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408 K.G.BUDDEN

where X, Y, Z are the standard symbols of magnetoionic theory (Ratcliffe 1959; R.w.i. ch. 3).
When the collision frequency v is ignored, Z = v/w is zero and U is unity.

It is now assumed that in one of the regions where ¢, €,, €; are constant, that is where +sis
real and large, there is an incident plane electromagnetic wave, whose field components all have

an x and y dependence exp{—1ik(S;x+S9)}, (5)

where a time factor exp ( +iwt) is used. Then, because of Snell’s law, the resulting disturbance
has the same x and y dependence for all s. If the region of incidence is free space, §;, S, are the
¥, y direction cosines of the wave normal there.

The theory of propagation in a stratified plasma is often formulated in terms of a 4 x 4 matrix T
used by Clemmow & Heading (1954) (R.w.i. ch. 18) and this method is followed here. It can be
shown (Walker & Lindsay 1975) that

—ezacSI GzySI SISZ ezz—S%
e T = eszZ _ezyS2 ezz—S% SlS2 (6)
“ eyz €o0— ezz(eya: + Sl Sz) - eyz ezy + € (eyu - S%) - 61;'z"*§'2 6z/z Sl
—€p€op T+ ezz(eacx -§ 3) €2€ay — ezz(ea:y + Sl Sz) esz2 - ea:le

This expression may be more familiar for the special case S, = 0, as given by Budden (1972). Its
derivation for the general case is straightforward.

Now (3) and (6) show that if the direction of the superimposed magnetic field is reversed,
gis transposed, and T is transposed about its trailing diagonal. The resulting matrix will be called

the adjoint of T and written T. Thus
Ty = Ts—j, 5—i° (7)
(Budden & Clemmow 1957).
It is convenient to express this in matrix notation with the matrix B used by Bennett (1976):

0 0 0 1

; 0 0 1 0
B=1o 1 00 ®)

1.0 0 0
with the properties BT = B~ = B. (9)
Then T = BT"B, (10)

where a superscript T denotes the transpose. The results (7)—(10) are still true when damping is
included and when s is complex.

The elements on the right of (6) are all analytic functions of 5, bounded when s is real. They
may have poles where s is complex and these would be singularities of the differential equations
(14) and (16) below. These poles might give rise to some interesting effectsbut their studyis beyond
the scope of this paper. Similarly the factor ¢,, on the left of (6) is bounded when s is real but in
nearly all practical situations it has at least one zero for a real value of 5, when damping is
neglected. In the special case of magnetoionic theory with electrons only (3) and (4) show that

this occurs where 6, = 1—X(1—n2¥?)/(1—¥?) = 0, (11)
which is just the condition that one of the refractive indices p shall be infinite (Ratcliffe 1959). If

Y < 1, this is the infinity associated with the Z mode. Ifn = 0, (11) is the condition for the upper
hybrid resonance. In a plasma with more than one ion species, other zeros of ¢,, can occur,
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RESONANCE TUNNELLING 409

associated with the lower hybrid resonances, and other resonances. In this paper we study the
case where there is one isolated simple zero of €., on or near the real s axis. It is a simple pole of
each of the elements of T in (6) and, as shown below, it is a regular singularity of the governing
differential equations. At least one of the solutions has an essential singularity there, and so it is
necessary to introduce a branch cut, as will now be explained.

In the loss free case ¢, is real when s is real, and it will now be assumed that it is a decreasing
function of s at its zero. This would occur, for example, on the lower side of an ionospheric layer
where the electron concentration, proportional to X, is an increasing function of s. Then it can
be shown, see § 8, that in some important practical cases the barrier is in the region where Re (s)
is less than its value at the zero of ¢,,, as in figure 1. If a small amount of collision damping is now
introduced, (11) is replaced by

6, = 1= X(U2—n2Y?) J{U(U?— Y?)} = 0, (12)

and it can be shown that, where (12) is satisfied, X, and therefore also s has a negative imaginary
part. The cut must be drawn from this point to infinity without crossing the real s axis. It must
therefore run from the zero of ¢, to infinity in the lower half of the s plane. This must still apply in
the limit when the damping is zero. The same singular point and the same cut are used for T.

If now a solution with a singularity is to be studied on a contour running from where s is real
and positive to where it is real and negative, the contour cannot, in the loss free case, run along the
real axis through the singularity. It must be indented on the positive imaginary side. It is now
convenient to choose the origin of s at the zero of ¢,,. Then ifarg s = 0 when sis real and positive,

we must take arg s = +n when s is real and negative. (13)

This requirement has important consequences for the theory of § 6.

In the other case where ¢,,, near its zero, is an increasing function of s, the barrier would be on
the side where Re (s) is greater, and the cut would have to be in the upper half of the s plane. This
case could obviously be dealt with in a similar way to the example studied here.

3. THE DIFFERENTIAL EQUATIONS AND THEIR ADJOINT

The x and y components of the electric and magnetic fields of the waves in the plasma are
written as a column matrix e with four elements E,, — E,, Z,H,, Z,H,, where Z; is the charac-
teristic impedance of free space. Then Maxwell’s equations and the constitutive relations of the
medium together with (5) may be combined into a set of four first order differential equations
which may be written in matrix form

e =—iTe (14)
(Clemmow & Heading 1954) where a prime ’ denotes 0/0s.

These equations or variants of them are often used for computing ionospheric reflexion and
transmission coeflicients. The main applications are for low or very low frequencies when the
damping is appreciable. The singularity of T is then well removed from the real height axis and
gives no trouble. For other applications, however, when the damping is small, the singularity of T
can be troublesome in computing. For the solution that is singular the effective wavelength in the
medium is small near the singularity because of the large refractive index, and this means that
a very small step size is needed in the integration routine, with a consequent very long computing
time. The remedy is to integrate (14) along a contour in the complex s plane running into the
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410 K.G.BUDDEN

upper half of the s plane well clear of the singularity. This technique has been successfully used by
Smith (1974, 1977).

Solutions of (14) are to be studied here in a domain of the complex s plane within which T has
a simple pole at s = 0, and no other singularities.

We also use an adjoint column & whose elements are the adjoint field components E,, — E,,
ZyH,, ZyH,. These have been very fully studied by Suchy & Altman (1975). Their main pro-
perties are that they satisfy a similar set of equations to those satisfied by e, but () for a fictitious
‘adjoint’ medium in which the direction of the superimposed magnetic field is reversed, and
() the signs of all derivatives with respect to , y, z are reversed. Thus their x, y dependence is

not given by (5) but by exp { + k(S +Sup))- (15)

The result of () is that T is replaced by T, (7), (10). The result of (4) is that the sign on the
right hand side of the differential equation is positive. Thus the adjoint differential equation is

e =iTe. (16)

Now multiply (14) on the left by e* B, multiply the transpose of (16) on the right by Be, and add.

This gives (8/3s) (8" Be) — (@ T" Be—&"BTe), (17)
and (9) and (10) show that the right hand side is zero. Thus

W, = eTBe (18)

is independent of 5. This applies for all s, real or complex, that are not singularities of e, e. It
applies whether or not the effect of damping is included. The quantity (18) is the z component of
the bilinear concomitant vector W (Suchy & Altman 1975).

The solution € of (16) may be chosen in many different ways. Here the following choice will be
made, again based on a suggestion of Suchy & Altman (1975). Consider a loss free medium where s
isreal. Here (3) and (6) show that T is the complex conjugate T * of T. Thenit follows, by taking the
complex conjugate of (16), that e* is a solution of (16) when e is a solution of (14). This applies
only on the real s axis. Choose € so that e = e* where sis real and positive. Then (18) shows that

W,=Z(EH}f+EfH,—E Hf—~EfH,) = 4Z,11,, (19)

where [T, is the z component of the time averaged Poynting vector. This is no longer true if we
move into a region where the medium is absorbing or if we move off the real s axis. In both these
cases T # T*.

Now suppose that the medium is loss free. It is required to follow the changes of e, e, W, and 17,
as we move along a contour from real positive s to real negative s. If the solutions e, e are singular
ats = 0, the contour must be indented into the upper half s-plane to avoid the singularity. On the
indentation W, remains constant but I7, changes and (19) does not remain true. When the real s
axis is regained and Re (s) is negative, I7, is again constant, bute # e* and (19) is no longer true.
The z-component of the energy flux is not the same on the positive and negative sides of the
singularity or resonance. This result is used in §6 to show that there must be an apparent dis-
appearance of energy even in a loss free medium.
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RESONANCE TUNNELLING 411

4. SOLUTIONS NEAR THE RESONANCE

The matrix T in (6) and (14) can be expanded in a Laurent series with matrix coefficients,

thus T=sT +Ty+sT +s*Ts+.... (20)

In (6) the elements ¢;; are functions of 5. Let

{06.4(5)/0s}sg = —1/4 (21)
so that in the loss free case 4 is real and positive. Then (6) shows that
T_, =ab” (22)
where " = AMS, =S, —6,(0), e (0))
B, e, 5y 5] =

It is no accident that T_; has the simple outer product form (22). This occurs because E, is
eliminated from Maxwell’s equations when (14) is derived. The contribution of £, to 0e™ /s in

(14) s SE(S, Sy 6 €) (24)
and the z component of the fourth Maxwell equation shows that
B, = (6) M (— eu Byt 60y (— B)) + S, ZHy = $, ZyHy (25)
The adjoint matrix 7 can be expanded in a series similar to (20). It then follows that
T_, =ab", (26)
where a® = A¥HS;, -8, —¢6,(0), €,(0)}=>b"B,
BT = AMen(0), —e,(0), —S, 8= aTB.} (27)
The following properties are needed later:
bTa = a®b = bTa = a'b = A, (28)
where A = ALSy{60s(0) +6.0(0)} +S5{e,.(0) + €, (O],
= —2nAG(0) (IS; +mSy). (29)
In a loss free system 4 is real if Sy, S, are real.
a"Ba = b"a = a®b = bTBb = A, (30)
a®Bb = b"b = aTa = Q (say), (31)
bTBa = b"b = a%a = Q. (32)

The equality of (31) and (32) can be proved by multiplying out with (3).
A solution of (14) can now be found by a standard method similar to that used by Ince (1927,
ch. 15). We seek a series solution
e = sP(ey+se; +s%e,+...). (33)

Substitute in (14) and equate coefficients of successive powers of s. This gives

pe, =iT_, e, (34)
(p+1+iT_y) e, = —iT, e,
(p+2+iT_;) e, = —i(Toe; + Ty e). (35)
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412 K.G.BUDDEN

Here (34) is the indicial equation. With (22) it shows that
either bTe, =0, p=0, (36)
or e=a, p=-—id, (37)

In the first equation of (37) it is implied that there is a constant factor on the right, equal to
unity, with dimensions of electric field intensity. The vectors e, e; and their adjoints used below
all have the dimensions of electric field intensity, whereas T, T, @, b, their adjoints, and 4, 2 are
all dimensionless. Now (33) shows that the solutions (36) are analytic at s = 0. The vector e,
must be perpendicular to b in four dimensional complex space. It can be chosen in three linearly
independent ways. Thus there are three linearly independent solutions satisfying (36). There is
only one solution (37) and this is linearly independent of the other three, provided 4 # 0, and
(33) shows that it then has an essential singularity at s = 0. Thus for 4 # 0 there are four values of
e, giving independent solutions. Once ¢, is known the remaining coefficients e; in (33) can be
found in succession from (35), for it can be shown, by using (22), that if  is any integer

(r—id +iT_)! = (r+iA)—1(1-ir—1T_1),}

(r+iT_) ™t = r Y1 —i(r+id)1 T_}. (38)

When 4 = 0, however, the solution (37) is not independent of the other three because now
e, = asatisfies the first equation (36). A way must be found of constructing a fourth, independent
solution when 4 = 0. The condition 4 = 0 includes the case S, = S, = 0, from (29). This is the
case of normally incident waves treated in previous work (R.w.i.). We need to find a solution,
singular at s = 0, that is uniformly an independent fourth solution of (14) whether or not 4 = 0.
The solution (37) does not satisfy this requirement. A suitable solution is constructed in the
following section.

The adjoint equation (16) can be treated in a similar way. We seek a series solution

e = 5P(e, +se, +s2e,+...). (39)
On going through the steps analogous to (34) and (35) it is then found, on using (26)~(29) that
either bTe, =0, p=0 (40)
giving three independent analytic solutions
or G,=a=Bb, j=ikd=—p (41)

giving one solution, singular at s = 0, if 4 # 0.

Any solution of (14) that satisfies (36) is analytic at s = 0 and will be denoted by e,, and its
coefficients in (33) by ey, €,,, etc. Similarly any solution that satisfies (37) is singular at s = 0
and will be denoted by eg with coefficients ey = @, e,g, etc. A corresponding notation is used for
solutions of the adjoint equation (16), namely e,, analytic at s = 0, with coefficients €, €,,,
etc. and eg, singular at s = 0, with coefficients eg, = @, €,g, etc.

Suppose now that we use a solution e,, and an adjoint eg. The first terms of the series for these
two solutions make a contribution to (18) given by

s4aT Be,, . (42)
But (27) and (36) show that thisis zero. This and the contributions from other pairs of terms in the

two series all vary with s. But W, must be independent of s as shown in § 3, so that all these contri-
butions must be zero. It can in fact be proved, by using (35) and (38) and their adjoints to find the
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RESONANCE TUNNELLING 413

coefficients e;,, e;s, that each pair contributes zero to . Next consider a solution eg and an
adjoint eg. The resulting I is constant and therefore must be given by
ey Bey = a"Ba = A ‘ (43)

from (30), because this is the only term that does not depend on s. Again it can be checked by
finding the coefficients €, €5 that all other products ejs Be,y are zero. Finally consider a
solution e, and an adjoint e,. Their contribution to I, is

W, = eg, Be, 44
0A

because all other terms in their series give zero. The value of (44) depends on the magnitudes of
the vectors eg,, €,,, which have not yet been defined.

5. CONSTRUCTION OF SOLUTION WITH SINGULARITY

For one of the three analytic solutions choose a particular e, to be called e,, for which

e =a—-4b/Q. (45)
Equations (28) and (31) show that this satisfies (36) as it must. Similarly for one of the three
analytic adjoints take &, — a— A/ (46)

which satisfies (40). On the remaining two analytic solutions we can now impose the further
condition that they are perpendicular to a as well as to b, so that

ef,a=ef,Bb=0 (47)
and similarly for the adjoints ea =ej, Bb = 0. (48)
These ensure that if a solution e,, is used with an adjoint e, or eg their contributions to I, are
zero. Similarly solutions e,, eg with an adjoint e,, give no contribution to W,. If a solution e,
or an adjoint €, is present, they have no singularities at s = 0. They do not interact with e,, eg,
e,, €y to give contributions to W, and we may say that they are ‘independently propagated’ near
s = 0. They need not be considered further here.
Note, next, that the contribution of (45) and (46) to W} is
@"Ba + (42/92?)b*Bb— (4/9) (@*Bb+b"Ba) = — A+ 43/ (49)
where (30)—(32) have been used.
Now take as the required fourth solution
e, = (eg—e,)/4. (50)
We may write this e, = {s714e,4(4) —e,(4)}/4 (51)
where e,5(4) and e, (4) are the series in (39). They are different functions of 4 but tend to the
same limit e, when 4 = 0. Then it follows that
. . d
lim e, = —l(ln‘y) €, +d—A{eaS(A) '—ea(A)}A=0' (52)

4—-0

Thus (50) tends to a non-zero bounded limit as 4 — 0. It is obviously singular when s = 0, and it
is linearly independent of the other three, analytic, solutions e, and the two e,’s. It therefore
satisfies the requirement of § 4 that it is uniformly an independent solution, singular at s = 0,
whether or not 4 = 0.

40 Vol. 2g0. A.
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The above process is very similar to that used for constructing a second solution Y,(z) of
Bessel’s equation when the order v tends to an integer (see for example Watson 1944, §§ 3.5-3.53).
An illustration using Bessel functions is given in § 7.

Similarly take as the corresponding fourth solution of the adjoint equation

| e, = @s—2,)/4. (53)
Then the contribution of (50) (53) to W, can be found from (43) (49) and is
A—2el Beg+el Be,} = A4/022 (54)

Thus it is zero when 4 = 0. This is because (50) and (53) resemble perfect standing waves. The
solution e, of (45) and its adjoint (46) also give W, = O when 4 = 0, as shown by (49). Thus these
solutions also resemble perfect standing waves when 4 = 0. To get a solution representing a
travelling wave we must take a linear combination of e,, e, and of their adjoints. Thus consider
a general solution ¢ = Pe,+Qe, (55)
and an adjoint e = P*e, + Q%e,. (56)

When s is real and positive these are complex conjugates and so W, = 42,11, from (19). But (43),
(49), (54) show that

W, = PP*(— A+ 43/92) + QQ*A/Q2 + (PQ* + P*Q) (1— A2/22). (57)
If A = 0 this gives W, = PQ* + P*Q (58)

which is in general non-zero when 4 = 0 and shows that (55) and (56) represent a perfect or
a partial progressive wave.

The values of P, @ needed to give a perfect progressive wave can only be settled by examining
the solution (55) in a region of the s plane where the medium is homogeneous or sufficiently slowly
varying for some form of asymptotic or W.K.B. solution to be used to define a progressive wave.
This aspect of the problem is taken up in § 8.

6. Loss OF ENERGY AT THE SINGULARITY

Consider again the solution (55) and its adjoint (56), which are complex conjugates when s is
real and positive so that there the upward energy flux 11, is $ Z, times (57), from (19). Now (55)
includes a term Qeg/A from (50) which has a factor s—14. The first term of the series (33) for eg
therefore contributes Qs-i4a/ A, (59)
and this is the only term of the series that contributes to W, (57) as shown in § 4. Similarly the
adjoint (56) contains a corresponding term

Q*s4a/A. (60)

The terms (59) and (60), which are singular at s = 0, give a contribution to ¥, equal to QQ* /4
from (30). It does not appear in (57) because it is cancelled by a contribution from the term
—e,/4 in (50), and its adjoint, which are analytic at s = 0. This cancelling contribution comes
from the term — 4 in (49). Now we move to where s is real and negative. This must be done by
going along a contour indented into the upper half s plane, to avoid the singularity. According to
(13) args increases from 0 to +m so s74 in (59) becomes |s|~4e™ and s in (60) becomes
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|s]i e="4. The product of these two factors is unchanged and their contribution to W, remains
the same as before, and is still cancelled. But (59), (60) and therefore (55), (56) are no longer
complex conjugates. Then (19) is no longer true.

To find IT, when s is real and negative we must follow the function (60) along a contour
indented into the lower half s plane so that it remains the complex conjugate of (59). Then s in
(60) becomes |s|i4e™. Both (59) and (60) have been multiplied by e™. Their contribution to
4Z,1I1,in (19) is thus multiplied by e2* and is no longer cancelled. Now (59) and (60) are the
only terms with singularities that contribute to W, or IT, and therefore they are the only terms to
be affected by indentation of the contour. Hence, if we write I7,( —) and II,( +) for the z com-
ponent of the Poynting flux when Re (s) is negative and positive, respectively, then

AZ{I1(—) —IL(+)} = QQ*(c*—1)/4 = QQ*(2n + 2n*4 +...), (61)

where (30) has been used. This is positive, whatever the sign of 4. It shows that there must always
be a disappearance of energy, in the loss free case at a resonance, if the solution with a singularity
is present.

This proof has been given for the case 4 # 0, but the result (61) is still true in the limit 4 - 0.
This could be established by constructing a separate proof for the case 4 = 0. It would use for
e, the solution (52), containing Ins. It need not be given here because it is done for a specific
example in § 7. The result is the same as (61) with 4 = 0.

In the special case where P = 0, 4 = 0in (55), (56) it follows from (19), (57) that IT,(+) = 0,

so that (61) gives
II(-) = nQQ*/2Z, (62)

and the whole of this energy flux, coming in from where s is negative, disappears at s = 0.

As another example suppose that P=-n@Q, 4 = 0. Then (19), (57), (61) give
II(+) = —inQQ*/Z,, II,(—) = 0. Here the energy flux comes in from where s is positive
and all disappears at s = 0. The need for writing —P/@Q = = in this example seems to be
similar to the need for a factor 1/n in Weber’s definition of a Bessel function of the second
kind (Watson 1944, p. 64).

It must be stressed that the energy fluxesin the solutions that are analytic at s = 0 are unaffected
by the resonance. In this rather artificial example where the medium is assumed to be completely
loss free, the energy that is lost from the solution with the singularity really does disappear. For
example, Chessell (1971') , in calculations for ionospheric layers, found that as much as 65 9%, of
the incident energy was lost at a pole of the refractive index, even when electron collisions are
reduced to zero. Emphatically this lost energy does not reappear, through a process of mode
conversion, in other modes of propagation, as has sometimes been suggested. The question as to
what happens to the lost energy is discussed in § 13.

7. AN ILLUSTRATIVE EXAMPLE: IONOSPHERE AT THE MAGNETIC EQUATOR

The foregoing results may be illustrated by an example in which the waves are normally
incident on the plasma, so §; = S, = 0, and the superimposed magnetic field is parallel to the
xaxis,som = n = 0, = 1. Itis further assumed that the plasma is a loss free cold electron plasma,
so that the formulae of magnetoionic theory (Ratcliffe 1959) may be used. This is close to the
situation that occurs when radio waves are vertically incident from below on the ionosphere at

40-2
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the magnetic equator. Now all except four of the elements of T, (6), are zero and the equation (14)
separates into two sets E T o 111 E
i) ==l ol ()
‘ ~E, 1" .Jo 1 —E,,]
and [zot) ==l oll st} (04

Here p2 = €5, and p? = €,¢6,/¢,, are the squared refractive indices for the Ordinary and Extra-
ordinary waves respectively. It is only #2 that shows a resonance, in this case the upper hybrid
resonance where X = 1— Y2, and so we consider only (64), and take £, = H, = 0.

Suppose now that ue = f/s. (65)
This example was studied in R.w.i. (§21.14). Then (64) and its adjoint are

o A | P A B P A R D/ P B
oH, Bls O]\Z,H, ]’ |Z,H, Bls 0]\ Z,H,
which show that E, and E, satisfy the same differential equation

d2E, ..

_d—}2_+}-E” = 0. (67)
Now from (18) W, = —ZyH,E,+H,E,) i(E‘y%%—Eu%) . (68)

The last bracket is the Wronskian. It was proved in § 3 that W, must be constant. In this example
it follows since any Wronskian of (67) is constant because there is no first derivative term.

Equation (67) was derived in R.w.i. from Forsterling’s (1942) coupled equations by neglecting
the coupling terms and the coupling parameter . This left open the possibility that any lost
energy might have been accounted for through mode conversion via the neglected terms. In the
present example, however, there are no approximations of this kind. With the condition n = 0
used here, Forsterling’s i is zero. The Forsterling variable & is exactly proportional to E,, and
equations (66), (67) include no approximations.

Now (67) has the general solution

Ey: Ey = 5%%1{2 (:35) %}’ (69)

(Watson 1944 p. 97; R.w.i. p. 475) where % denotes any Bessel function. We choose E, and E, so
that they are complex conjugates when s is real and positive, as explained in § 3. We could choose
% = J for both, and (68) shows that this would give W, = 0. The choice € = Y (Bessel function of
the second kind) would similarly give W, = 0. This is because, when s is real and positive, the
functions J, ¥, represent perfect standing waves with no total energy flux.

Consider the general solution

E, = si[PJ,{2(Bs)1} +nQY:{2(Bs) 1], }
E, = s{[P*J,{2(fs)}} +nQ*Y1{2(8s)H}].
This gives W, =i(P*Q — PQ*) (71)

as can be shown by using the formula for the Wronskian given by Watson (1944, p. 76). The
functions in (70) and their derivatives can be expanded in series thus (Watson 1944, p. 62):

sWI{2p5)3) = s = 4phse+ .., (72)

(70)
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Y {2(fs5)3} = — fin-t 4o (Ins) {Bls— 1BE2 + . Y+ ays +aps? 4., (73)
2 AER(BN] = pH s+ .., (14)

éa}[s%Yl{2(,6’s)%}] = '%%(lns) {1—PFs+..}+ag+ais+.... (75)

The values of the constants a;, a; are not needed here. These series provide an alternative way of
finding W,. The only terms that contribute are those whose product is independent of s, that is
—1/npB%in (73) and Bt in (74). This confirms the result (71). There are two other terms, from a;, in
(75) and —1/nB% in (73), that cancel. These come from

in2QsIT;(2(45) ) o [ QAR (2(5) 1),

and —in? L [QHT,{2(A)H] x QT {2(89)H.

The terms on the left are from the adjoint and those on the right from the solution.

The solution (70) and its adjoint are complex conjugates when s is real and positive, and (71),
(19) show that .

II, = {i(P*Q - PQ*)/Z,. (77)

We now move to where s is real and negative. This must be done on a contour indented into the
upper half s plane to avoid the singularity at the origin. The functions (70) are analytic and W
remains unchanged. In (75) the term (#%/x)Ins becomes (84/n)In |s| +if2, so that there is an
extra term nQQ* in the top line of (76). It is cancelled by an equal term from the bottom line.

To find IT, when s is real and negative, however, the adjoint must be replaced by a function
that remains the complex conjugate when the transition is made. Thus for the terms on the left
of (76), which came from the adjoint, the path must be a contour indented on the negative
imaginary side of the origin. Then in (75) (8%/r)Ins becomes (4%/x) In |s| —iB%. Both top and
bottom lines of (76) now contribute extra terms Q@ * that add together. This shows that

IL(-) = 1I,(+) = $nQQ*/Z, (78)

which is the same as (61) with 4 = 0, derived for the more general case.

In R.w.i., p. 475 a solution (69) was studied with ¥ a Hankel function H{". This represents an
incident wave coming down from where s is positive, and it was shown that there is no reflected
wave. This solution requires P = 1, @ = i/n in (70) (Watson 1944, p. 74). Thus from (19), (71)
II(+) = —%nZ, and hence from (78), II,(—) = 0. The downcoming energy apparently
disappears.

A similar analysis could be done by replacing (65) by u2 = y + /s, where 7 is a constant, so
that #2 has a zero where s = —#/y and there is a barrier where —f/y < s < 0. This case
was studied in R.w.z., §21.15. The equations that replace (66), (67) are still exact because no
coupling terms are neglected. Solutions were given in terms of Whittaker functions as used in §12,
and it was shown that some energy apparently disappears. Again it cannot be accounted for
by mode coupling because in this example there is none.


http://rsta.royalsocietypublishing.org/

L\

A

<
-
3~
olm
~ =
k= Q)
O
= uwv

PHILOSOPHICAL
TRANSACTIONS

’\
A \
A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

/=0

SOCIETY

OF

A

9

OF

Downloaded from rsta.royalsocietypublishing.org

418 K.G.BUDDEN

8. THE CHARACTERISTIC WAVES, OR MODES

In order to give meaning to the terms ‘barrier’ and ‘tunnelling’, it is necessary to examine the
the characteristic waves, or modes. For a loss free system two of these characteristic waves are
attenuated within a barrier, and outside the barrier they are propagated. In a medium to which
(3), (5), (6) apply there are four characteristic waves. If the medium were homogeneous, (3)
and (6) would be independent of z, that is of 5, and the s dependence of all field components in
one characteristic wave would be given by a factor

exp (—ikgz) = exp (—igs). (79)
Then (14) shows that the four values of ¢ are given by the Booker (1939) quartic equation
det (T —q1) = 0, (80)
which may be written €t + a3 +a,q® +ayq+ay = 0. (81)
By multiplying out the determinant in (80) it can be shown that
ag = —2Gn(S; L+ Sym), } (82)
a; = —2n(S; [+ S,m) {3e5(ey +€5) —€,6,+ G(S3+S53)},

and more complicated expressions for a,, a,, not needed here.
If the medium varies slowly enough with s, the idea of characteristic waves can still be used for
most values of s. The factor (79) is now replaced by

exp ( i f squ), (83)

and the corresponding solutions are called the W.K.B. solutions. It is thus important to study
how ¢ depends on s.

The W.K.B. solutions with good approximation represent waves that are independently
propagated provided that the four roots of (81) are distinct. The W.K.B. solutions fail near
points in the complex s-plane where two roots of (81) are equal, and these are called ‘ coupling
points’. They include ‘reflexion points’, and are sometimes called turning points’. The two
characteristic waves associated with these two roots lose their separate identity in a domain
surrounding a coupling point. _

The series solutions e,, eg, (33), (39) used earlier are not necessarily characteristic waves.
Their radius of convergence is limited only by singularities of the differential equation (14). The
coupling points are not singularities but ordinary points (Budden 1972). Thus any series solution
might be a mixture of characteristic waves, in proportions that are nearly constant at points
remote from coupling points, but vary rapidly near coupling points. This is why it is necessary to
make a separate examination of the characteristic waves.

For normal incidence, §; = S, = 0, (82) shows thata, = a3 = 0so that (81) isa quadratic for ¢2.
Its four roots are now denoted by + u,, + s, where u,, f, are the refractive indices for the
Ordinary and Extraordinary waves respectively. In this case there is a reflexion point where
either u, or x, is zero.

In the most familiar form of barrier the square of one of the refractive indices, say p2, is negative
for some range of the real s axis. At the ends of this range #2 is zero and these boundaries of the
barrier are reflexion points. Outside the barrier, the two roots + s, are real and correspond to
two waves propagating in opposite directions. But one value of 2 is infinite where ¢, is zero, and
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this infinity can form one boundary of a barrier. It can be shown that, for a cold electron plasma,
the coefficient @, in (81) must be negative at s = 0 where ¢,, = 0. This applies, for example, to
the ionosphere. Now for small |s|, one value of x2 is given by

:“2 - az/ezz (84)

and since we are assuming (see § 2) that ¢, near its zero, is a decreasing function of s, it follows
that g2 is negative when s is negative. Thus the barrier is on the side of the resonance where s is
negative. It will here be assumed that this is true. Gases where @, has the opposite sign can easily
be dealt with by similar methods.

q q
4 4
L 1
A B s A B s
S - P T
2 6 5} 9 h \4\56/_——5——'
3 .I
(a) (b)
3
q
q 8
4
1 1 _ 7 &-___L_._____
A B s ﬁ:“"‘ : :
___7——/ — A B
5
(c) (d)

Ficure 1. Some examples of how ¢ may depend on s = £z in and near a barrier. The chain curves show
Re (¢;) = Re (¢,) in the barrier region where (¢, — ¢,)? is negative. Figure 14 is for 4 large and paositive and
is typical of very oblique incidence. Two roots ¢ are equal at A and at B, and between them the barrier is
similar to a conventional barrier. Figure 15 is for nearly normal incidence when 4 is small and positive. The
coupling point at B is still where the difference of the ¢’s is zero, but its properties are modified by the
proximity of the resonance. Figure 1¢ is the degenerate case of normal incidence with 4 = 0. The coupling
point B has moved to coincidence with the resonance, which therefore forms one end of the barrier. Figure
1d is for a negative value of 4. The coupling point B is again where s is negative.

For oblique incidence and a loss free system the coefficients in (81) are all real when s is real,
and Booker (1939) pointed out that then the roots ¢ are either (a) all real, or () two are real and
two are a complex conjugate pair, or (¢) there are two complex conjugate pairs. Suppose that
there is a coupling point for two roots, say ¢;, ¢, on the real axis. Then (g; — ¢,)? is positive on one
side of it, and here the two waves are propagated in opposite directions. On the other side of it
(¢1—g»)? is negative and here the two waves are attenuated in opposite senses. A barrier is a
range of the real s axis where (g, —¢,)? is negative, and it is zero at the ends. An example is the
range AB in figure 1. Thus for oblique incidence ¢, — ¢, plays the same role as does the refractive


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

Y,

Py
a \

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

420 K.G.BUDDEN

index g for normal incidence. Itis in this sense that the term ‘ effective refractive index’ is used for
¢1— ¢» in the abstract and introduction. This paper is concerned only with coupling points that
are on the real s-axis, and are transitions between the regimes (@), (4), (¢). There are other
coupling points not on the real axis that are important (see, for example, R.w.i.) but are not used
here.

A singularity of the differential equation (14) occurs ats = 0 wheree,, = 0, and (81) shows that
one of its four roots is infinite there. If a5 # 0, only one root is infinite and if |s| is small enough
this is given by g~ —ayfe, o 1/s. (85)
Thus on both sides of the singularity ¢ is real and the associated waves are propagated. A resonance
where only one ¢ is infinite cannot be inside a barrier and cannot be the boundary of a barrier.
See figure 1. (Other examples can be seen in curves given for example, by Booker 1939, Smith
19744, R.w.i.) For normal incidence, however, (82) shows that a; = 0 and (29) shows that then
A = 0. Now two roots of the quartic (81) are equal ats = 0, because a coupling point, Bin figure 1,
has moved to coincidence with the singularity or resonance. It is for this reason that the barriers
studied in R.w.i. were degenerate, and Stix (1962) refers to this kind of resonance as a ‘singular
turning point’. In the following sections an attempt is made to disentangle the separate effects of
the coupling point and the resonance.

Other cases of resonance can occur. For example it can happen that in (81) a3 = ¢, = 0, and
ay, ay both contain a factor ¢,,. Then a kind of resonance can occur within a barrier region.
A case of this kind was considered in R.w.i., §§ 16.12-16.17 and by Hirsch & Shmoys (1965) but
is not studied further here.

Figure 1 illustrates the problem. For a loss free system there is a resonance on the real height
axis at s = 0, and reflexion points at A, B. In figure 14 there could be an incident upgoing wave
where s is negative, branch 1 of the curves. The results of § 12 below show that part of its energy
isreflected at A to give a downgoing wave, branch 2, but some tunnels through to give an upgoing
wave above B, branch 3. This then encounters the resonance and some energy must disappear,
but there can be a residual upgoing transmitted wave where s is positive, branch 4. Figure 14 is
similar but the tunnelling wave can attain branch 7 and thence branch 4 without encountering
the resonance. If the angle of incidence is small, however, the resonance is near B, the downgoing
wave of branch 8 loses its physical identity, and there can be a loss of some energy.

Alternatively there could be a downgoing incident wave where s is positive, branch 5. In
figure 1a this goes to branch 6 and is partly reflected at B, but some energy tunnels through to
give a downgoing wave where s is negative, branch 2. It is shown in § 12 that there is no outgoing
reflected wave, branch 4, and this must be because the reflected energy, branch 3, is lost at the
resonance. In figure 14 the downgoing incident wave, branch 5, first encounters the resonance
and some of its energy must disappear. The remainder tunnels through to give a downgoing wave
below the barrier, branch 2. It is shown in § 12 that again there is no outgoing reflected wave,
branch 4, and this must be because the properties of the reflecting system, the reflexion point at
B with the resonance near it, are so modified that there is no reflexion.

The reasons why branch 3, figure 1a, is associated with an upgoing wave, and branch 8,
figure 1d, with a downgoing wave are given later, § 10.
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9. COUPLED EQUATIONS

The W.K.B. solutions for the characteristic waves are conveniently studied by using the
coupled equations (87) of Clemmow & Heading (1954). Let s; be an eigen column of T with eigen
value ¢; and let S be the 4 x 4 matrix of the four columns s,. Define four new dependent variables,

as a column f satisfying e = Sf. (86)

Then f satisfies f =—iQf+If, I'=-8"15, (87)

where Q is the diagonal matrix whose elements are ¢;. The terms I'f are called coupling terms and
I is called the coupling matrix. All its elements depend on derivatives with respect to s of the s,.
But the s; are constant in a homogeneous medium, and their derivatives are small in a slowly
varying medium. Thus I' is small in a slowly varying medium provided S is non-singular. If the
coupling terms are neglected in (87), the remaining equations separate into four first order
differential equations for the f;, whose solutions are the W.K.B. solutions. But a coupling point is
where two ¢;’s and thence two §,’s are equal so that § is singular. Thus (86), (87) cannot be used
near a coupling point and an alternative to (87) is needed, given below ((104)).

Coupled equations such as (87) or (104) are not really intended for accurate computing,
although (87) has been successfully used by Arantes & Scarabucci (1975). Their purpose is to
enable physical processes such as coupling, reflexion and resonance to be studied. They are often
used with approximations, such as the neglect of the coupling terms. This could lead to errors
but these are small in the practical cases that have been studied by a comparison with computed
solutions. There do not seem to be any examples of physical importance where the errors are
serious. For computing it is easier to use the original equations (14) or variants of them.

Before studying the neighbourhood of a coupling point, we must examine whether (87) can be
used near a resonance. The columns s, in § are eigen columns of the matrix on the right of (6).
On the real s axis, including s = 0, all elements of this matrix are bounded, and so its eigen
columns are bounded. Provided a; # 0 at s = 0, that is 4 # 0, the quartic (81) has only one
infinite root there. If the other three roots are distinct then it follows that the four s, are distinct.
Each s; may be multiplied by an arbitrary ‘normalizing’ factor. It is possible to choose these
factors so that S is bounded and non-singular at s = 0. Thus the coupled equation (87) can be
used for a slowly varying medium in a domain of the s plane containing a resonance, provided
that there are no coupling points in or near the domain. This means that |4], in (92) below, must
not be small. The branch cut of § 2 must, of course, be used. For a cold electron plasma, a form of
S suitable for this was given by Budden & Clemmow (1957), (and also R.w.i. (18.74)), and it can
be checked that the elements of their § are all bounded where s, = 0.

Similar conclusions apply for the adjoint system. The quartic (81) is the same. The adjoint of

(86) is ¢ =57 (88)
and it was shown by Budden & Clemmow (1957) that, with their normalization of S,
ST = S-1B (89)
and the adjoint coupled equations are
f =iQf+If, T =-8-1§ = —TI". (90)
Thus from (18), (85), (87), (88) W, = e*Be = f"f. (91)

This was proved by Suchy & Altman (1975). It must be independent of s, as was proved in § 3.

41 Vol. 2g0. A.
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422 K.G.BUDDEN
Near s = 0, the root of (81) that is infinite there is
G = "‘13/"322z A/.S‘, (92)

where (21), (29), (82) have been used. As an example, suppose that (92) is exactly true and that
the medium is sufficiently slowly varying for the coupling terms in (87), (90) to be neglected.
Then the first of the four equations (87) is

J1=—1(4/s)f (93)
with the solution fi=Pexp(—idlns) (94)

(compare first term of (33) for solution (37)). Take 4 to be positive. Then the phase propagation
of this wave is upwards when s is real and positive and downwards when it is real and negative.
But it is explained later, § 10 that the direction of group propagation or ray is obliquely upwards
for all real s # 0. Similarly for the adjoint equation (90) we may choose the solution

1= P*exp (+id1ns) = f§ (sreal and positive). 95
P P

Then, from (19), for s real and positive, W, is 4Z,IT, where IT, is the time average of the z
component of the Poynting vector. By arguments similar to those in §§ 6 and 7 it now follows that

IL(=) —IT,(+) = PP*(e*™ —1)/4Z,. (96)

Thus there is a disappearance of some energy at the resonance, and it has now been shown that
this occurs for the characteristic wave that is singular at the resonance.

This argument fails, however, if |4]| is small or zero, for then there is a coupling point near to
or at s = 0. Since the coupled equations (87) fail at a coupling point we need an alternative to
the transformation (86) with a new matrix V replacing §, such that the resulting equations can
be used in a domain containing both a resonance and coupling point.

A transformation leading to equations that can be used in a domain containing a coupling
point was given by Heading (19614) and adapted for the radio propagation application by
Budden (1972). Instead of the matrix § in (86), it used a new matrix U analytic and non-singular
at a coupling point, but unfortunately some of its elements have poles at a resonance. A suitable
new transforming matrix V is constructed as follows.

We are interested in only two roots g;, ¢, of the quartic (81) and their associated eigen columns
§3, 85 of T. Let ¢, be the one that is singular at s = 0 when 4 # 0. Consider a domain of the
complex s-plane containing a resonance at s = 0, and two coupling points, at 5., S, which are
real and satisfy Seg < 501 < 0. (97)
At both these points ¢; = ¢, and they will form the boundaries of the barrier. It was shown by
Budden (1972) that ¢; + ¢, and (g, — ¢,)? are analytic at a coupling point, and that ¢, — ¢, has a
simple branch point there.

It is thus assumed that ¢;, ¢, are not equal to ¢, ¢, anywhere in the domain. The waves asso-
ciated with ¢, ¢, are independently propagated. The coupling terms involving them are assumed
to be small and are neglected. A coupling point where ¢; = ¢, within the domain could be dealt
with but is not of interest here.

The matrix S, (86) used by Budden & Clemmow (1957) and R.w.i. (18.74) is bounded at a
resonance but singular at a coupling point. In addition each of its columns s, contains a nor-
malizing factor, (4; F;)~}in their notation, that has a branch point like (s —s,)~# at each coupling
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point. These factors are therefore omitted and a factor ¢! is also omitted. The resulting new
matrix will be called &. It could still be used to derive a form of (87) but it does not satisfy (89).
A column of & is given in the appendix. Its elements contain integer powers of ¢ up to ¢%. Its
first column is infinite like 572 at s = 0. The columns of & will now be denoted by s;.

The third and fourth columns of & can be used as the third and fourth columns of the new
matrix V. The first two columns of V are to be suitable independent linear combinations of s,
and §,. First consider s, — §,. This has a factor ¢, — ¢, and so take

(81— 82)/(q1—¢2)- (98)
This is analytic at each coupling point and was used by Budden (1972) as the second column of U.
But its elements contain terms ¢; +¢, and €,,(¢3+ ¢, ¢» +¢3) which are infinite like €;;! at the
resonance. Hence for the second column of ¥V we take

(81— 82) €2/ (01— 02)- (99)
This is bounded and analytic at both the resonance and the coupling points.
Finally consider — ¢, $; + ¢, §,. This also has a factor ¢; — ¢,, and so take

(— 4281+ 0155) /(01— ¢2)- (100)
This too is analytic at a coupling point and its elements contain terms ¢, ¢, and €,,4; ¢,(¢1 + ¢5)
which again are infinite like ¢;;! at the resonance. This is still true in the limit 4 = 0. Hence for
the first column of V we take

(= 9281+ ¢155) €./ (01— 22)- (101)
Thus the required matrix V is given by
—@2p p 00
= _|nt - 00
v=gw, w=["" "5 (102)
0 0 0 1
where p means €,./(¢; — ¢5)-
Define four new independent variables as a column g satisfying
e=Vg (103)
(compare (86)). Substitute in (14). This gives
g =—i1Ag+A4g, A=-V1V, (104)
0 1 0 0
where TV = VA, A=Ww-Qw=|"%% 0t 0 0f (105)
0 0 g3 O
0 0 0 ¢,

Now Visbounded and non-singular throughout the domain. The new coupling matrix 4 contains
V' which is small in a slowly varying medium. It is now assumed that the medium varies slowly
enough, and that g, g, are small enough for the coupling terms A g in (104) to be neglected. Then
the first two of the four equations (104) are separate from the others, and give

0g,/0s = —igy, (106)
0g2/0s = iq, 4281 —1(g1+ ¢2) G2 (107)
whence 0%g,/0s% +1i(g1 + ¢2) 081/05 — 419281 = 0. (108)

These equations can now be used to study tunnelling through a barrier when there is a resonance
nearby.
41-2
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424 K.G.BUDDEN

10. A MODEL FOR A BARRIER WITH A NEARBY RESONANCE

A model is now to be devised that displays the main features of resonance tunnelling. It must
apply for obliquely incident waves as well as for normal incidence. The coordinate axes can be
chosen so that S, = 0, S; = S, which means that the wave normals are in the x — z plane. The use
of z rather than s = £z will here be resumed.

The waves associated with the roots ¢y, ¢, of (81) are to be studied, and those associated with
q3, 44 are assumed to be independently propagated. A factor (¢—g¢s) (¢—¢,) can therefore be
divided out from (81) leaving a quadratic whose roots are ¢,, ¢,. This is to have an infinite root
at z = 0 and equal roots at two real negative values of z. A suitable quadratic is

zg? —wSq+z(52— %) —S2wcot 2y —v = 0 (109)
where b, v, w, i are positive constants with
v > Jwbtany, ¥ < im. (110)
For normal incidence, § = 0, ¢ = u this gives
W =b%*+v/z, (111)

which is just the degenerate case studied in R.w.i. §21.15. The inclusion of § # 0 now permits
removal of the degeneracy. Typical curves of ¢ versus s = £z are shown in figure 1 for various
Socd.

Now S, ¢ are the x, z coordinates of the refractive index x regarded as a vector in the direction
of the wave normal. A curve of ¢ versus S, for a fixed z, is a cross section of the refractive index
surface by a plane parallel to the x — z plane. Figure 2 shows a family of such curves for various
values of z. They are all conics with a common axis at an angle ©—y to the § axis. Their pro-
perties are in many respects similar to those for the Extraordinary radio wave in the ionosphere
when the frequency exceeds the electron gyro frequency.

When z - — oo the curve is a circle of radius 4. It simulates an isotropic medium such as the
free space below the ionosphere. As z increases the curves become ellipses which get smaller.
When z = —v/b? they shrink to a point. This is just what happens to the Extraordinary wave
refractive index surfaces at the cut off X = 1 —Y (Ratcliffe 1959). For —v/b? < z < —Jwtanyr
there are no real curves. For —fwtany < z < }w cot ¢ the curves are hyperbolae. They simulate
the (more complicated) curves for the Z mode in the magnetoionic case when 1 —Y2 < X < 1.
For z > Jwcot i the curves are ellipses. They now simulate the Z mode for 1 < X < 1+ Y. The
Z mode cut off at X = 1+ Y is not simulated, but is outside the range of interest. When z — + o0
the curves approach a circle of radius 6.

The family of refractive index surfaces can be used for ray tracing with Péverlein’s construction
(Poverlein 1948, 1949, 1950; R.w.i. § 13.21). A line is drawn perpendicular to the S axis at the value
of § for the ray to be traced. Where it cuts a refractive index surface, the outward normal gives
the direction of energy propagation, that is the ray. An example is shown as a chain line in
figure 2. A typical intersection for positive z is at P. Here ¢ is positive so the direction of phase
propagation is upwards. The normal is obliquely upwards and this is the direction of energy flow.
This point corresponds to branch 4 in figure 14. Another intersection is at Q ,where ¢ is negative
and here the normal is obliquely downwards so that both phase propagation and energy flow
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are downwards. This corresponds to branch 5 in figure 1a. When z is negative, a typical inter-
section is at R where ¢ is negative so that the phase propagation is downwards. But the normal is
is obliquely upwards and this is the direction of energy flow. This explains why the solution (94)
represents an upgoing wave even when the effective ¢ oc 1/sis negative. This point R corresponds
to branch 3 in figure 1a. There is another intersection at S for the same negative z. Here the
normal is obliquely downwards and so the wave is downgoing, branch 6 in figure 1a.

Ficure 2. Family of refractive index surfaces as given by the model, (109), for various values of z. The symbols
+,0, —, — oo, by the curves refer to the values of z. The chain line is used in Poverlein’s construction.

It is now convenient to study the special case i = }n. The inclusion of a general » complicates
the algebra but does not reveal any new physical principles. Hence (109) becomes

zq® —wSq +2z(52—b2) —v = 0, (112)
and the first condition (110) is 20 > wb?. (113)

If this is violated, all the curves of the family go through a common point. Though less realistic,
this case is of some interest and is mentioned again in § 12.
Also of interest is a variant of (112) in which the constant & is replaced by § to give

z¢?—wSq—v = 0. (114)
This equation has only one coupling point, where

z = —fwS§%/v. (115)
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426 K.G.BUDDEN

It is used in § 11 to study the effect of a single coupling point with a nearby resonance. If § = 0,
(114) gives g =)z (116)

which is the degenerate case studied in R.w.i., § 21.14.

11. SINGLE COUPLING POINT AND NEARBY RESONANCE

The object of this section is to examine how the behaviour of the waves near a coupling point is
modified when there is a resonance nearby. The properties of a well isolated coupling point were
examined by Budden (1972) who showed that the solutions can be expressed in terms of Airy
integrals. This is no longer true when a resonance is near.

It is therefore assumed that ¢;, ¢, satisfy (114). The coupling point is given by (115). Sub-
stitution of (114) in (108) gives

d%?g, ., .dg
zd—221+1/std—zl+/wg1 = 0. (117)

The general solution (Watson 1944, p. 97, eqn. (7)) is
g, = zV% {2k (vz)}}, (118)
where % is any Bessel function and v = 1-1ikSw. (119)

For § = 0, v = 1, (118) is the same as (69) and was used in R.w.i., (21.64).

Now seek a solution (118) which includes a wave travelling in the direction of decreasing z
(downwards) where z is large and positive, and which contains no upgoing wave when z is large
and negative. The required solution uses the Hankel function ¢ = H®, asin R.w.i.,§ 21.14. When
its asymptotic approximations (Watson 1944, p. 197) are used in (118) they give

z large and positive: g; ~ zP? exp {2ik(vz)%} (120)
z large and negative: g, ~ z¥ exp { — 2kv? |z|?} (121)
where p = } — 3ikSw.

Here (120) is the incident downgoing wave. There is no other term and therefore no reflected
wave. On the other side of the plasma (121) is an evanescent wave and gets indefinitely small
when |z| is large. Thus all the incident energy apparently disappears.

The dependence of ¢ on z is similar to the two right hand curves of figure 14 if § is positive, or
figure 14 if § is negative. These figures can be used in a rather crude physical description of what
happens. The incident wave (120) is represented by branch 5. In figure 14 it travels down to
branch 6 where z < 0, gets reflected at B, becomes an upgoing wave represented by branch 3,
and finally disappears at the resonance. In figure 14, branch 5, it simply encounters the resonance
and disappears before it can get reflected. To examine these effects, a more detailed study must be
made of the solution (118).

Let ¢ = 2k(vz)3. (122)

Figure 3 shows the complex {/v plane. If |{| and |v| are both > 1, there are regionsnear {/v = + 1
shown shaded in figure 3, where the Bessel functions %, () may be approximated by Airy integrals
(Olver 1954). The coupling point (115) is where

¢ =1ikw|S|, &/v=ikw|S|/(1—7ikwS). (123)

The locus of this for varying real § is two semi-circles in the upper half {/v plane.
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The real z axis maps into two perpendicular straight lines through the origin with directions
depending on §. If §'is large and negative they are as shown as al (z positive) and a2 (z negative)
in figure 3. The coupling point is on a2 and near to where {/v = 1, from (123). Itis at Ca in the
shaded region of figure 3, and a long way from the resonance because §'is large. Thus it might be
regarded with good approximation as well isolated. Then the treatment of Budden (1972) can be
used with Airy integral solutions. There is no need to use the Bessel function. Similarly the
resonance is well isolated, and can be treated separately as in §9 at (93), (94). Elsewhere, in
regions remote from the resonance and the coupling point, the Airy integrals can be expressed
as asymptotic approximations, but these are simply the W.K.B. solutions of the original equations
(14).

|
\ \
|

\
l \
|

|

Ficure 3. The complex ¢/v plane. The resonance is at the origin and the coupling point must lie on one of the
two semicircles shown as continuous curves. In regions like those shown shaded (not drawn to scale) any
Bessel function %, () may be approximated by Airy integrals, provided that || and |v| are large enough. The
real z axis for positive z maps into the broken lines al ar bl ar c1 according as S'is large, intermediate or small
respectively. Similarly the broken lines a2, b2 and c2 are the mapping of the real z axis for negative z, for the
same three values of S. The numbers near marked points are the values of |{].

Suppose, next, that § is negative but not large. Then the real z axis maps into the lines b1
(z positive) and b2 (z negative) in figure 3. The coupling point is now at Cb and is not in the
shaded region. It occurs where |{| and || are both of order unity, which is too small to allow the
Bessel function to be expressed in terms of its asymptotic forms alone. It cannot be treated as
isolated because its properties are now modified by the proximity of the resonance. Within a
domain containing both the resonance and the coupling point, the characteristic waves have lost
their identity and the Bessel function cannot be dispensed with. OQutside the domain, the W.K.B.
solutions can nearly always be used, provided certain precautions are taken. Heading (private
communication) has pointed out that there can sometimes be serious difficulties in linking the
solutions in different domains by means of the W.K.B. solutions. To locate the boundaries of the
domain it would be necessary to fix error bounds on the use of the W.K.B. solutions, but this is
not needed in the present discussion.

Finally let S be negative and very small. Then the real z axis maps into the lines c1 (z positive)
and c2 (z negative) in figure 3. Now c1 passes through a shaded region but here |§| and |v| are
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428 K.G.BUDDEN

close to unity and therefore too small for the Airy integral approximations to be applicable. The
coupling point is at Cc very close to the resonance at the origin. Again it is essential to use the
Bessel function when |§/v| does not greatly exceed unity. This case approaches the degenerate
case § = 0 studied in R.w.z. and in §7.

If § is positive, the behaviour is very similar, except that the shaded region near {/v = — 1 is
now used.

12, BARRIER WITH NEARBY RESONANCE

We now tackle the full problem where there is a barrier with a resonance at or just beyond one
boundary. It is assumed that ¢;, ¢, satisfy (112) with § < 4. Their behaviour is shown in figure 1.
Substitution in (108) gives

Ccl{izg;+%s—w%i—1+k2(£+b2~s2)gl=o. (124)
Change the dependent variable to
h = g,z°, where p = LikSw, (125)
and change the independent variable to
{ = 2ikyz, where y = (b2-52)% (126)
and v is positive. This gives %+ { -1 +%+ i—zzln—z} h =0, (127)
where k= —4%kvfy, m=+3%(1-ikSw). (128)

This is the form given by Whittaker & Watson (1935, p. 337) for the confluent hypergeometric
function.
(i) Waves incident from direction of negative z

One solution of (127) is =W, (8 (129)

which is the same as used in R.w.i., § 21.15 except that there S was zero and m was + 4. When z
is large and positive (126) shows that arg{ = in, and the asymptotic form for (129) gives
(Whittaker & Watson 1935, p. 343) with (125)

g ~ e ¥ 2P = exp {—ikyz— 3k(Sw +v/y) Inz - 3ik(v/y) In (2ky) + inkv/y}.  (130)

This represents an outgoing wave. There is no other term and therefore no incoming wave.
When z is large and negative, it follows from (126) and (13) that arg { = 3r/2. The asymptotic
approximation, given by Heading (1961 4), is
2nie2nix e%gg-x
~ "%g K
Wem© ~ ¥ g T =)

(131)

The first term is similar to (130) but now, from (13), In zis In |z| +ir. With (125) this gives
gy ~ exp{—ikyz—}ik(Sw+v/y) In |z| — §ik(v/y) In (2ky) + inko/y} exp {3nk(Sw +v/y)}.  (132)

This is an incoming wave, the incident wave. Define the transmission coefficient | 7°| as the ratio
of the moduli of (130) for z large and positive, to (132) for the same z but negative. Then

|T| = exp{—3nk(Sw+v/y)}. (133)
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The second term of (131) contributes

2mi
ST Td-—m-0TG+m—«

) exp {ikyz — $ik(Sw—v/y) In |z|

+ 4ik(v/y) In (2ky) + inkv/y + dnkSw}.  (134)

This is an outgoing wave, the reflected wave. Define the reflexion coefficient | R | as the ratio of the
moduli of (134) to (132). Then with (128)

IR| = 2rexp (— nkv/7y)
| PEE(Sw + /) {1 — §ik(Sw —v/y)}

= [Z;g i g:z {1 — 2e~"*l cosh (nkSw) + c‘“"””'}]%, (135)

where the formula |I'(ix)| = {(¥sinh7x) /n}~% has been used.
In the special case § = 0, (133), (135) give

|T| = e-¥rkvly, |R| = 1—emhory (136)

which agree with R.w.i., (21.75) and (21.76). Here |R| and |T'| were defined in terms of the
amplitudes contributed by the waves to g;. They are not simply related to the energy fluxes, as
wrongly assumed in R.w.i., but the conclusion that some energy disappears is still true.

The equation Sw=—v/y (137)

cannot be satisfied by any real §'if (113) is true. Let us temporarily discard the restriction (113).
Then, when (137) is satisfied (135) and (133) show that |R| = 0and |T'| = 1. The wave just goes
straight through without reflexion. But (112) shows that (137) is the condition that the width of
the barrier is zero, and one ¢ has the constant value y for all z. The two coupling points have
moved to a coalescence, of the type which Budden & Smith (1974) call C2. In this example, the
wave now behaves as though the medium is homogeneous. Itis the mode that is unaffected by the
resonance and so there can now be no disappearance of energy.

When Sw=+v/y (138)
which, again, can only be true for real § if (113) is discarded, then (135) and (133) show that
|R|2 = {1 —exp (—2mkv/y)}2rkv/y, |T| = exp(—2mkv/y). (139)

Again there is a coalescence type C2 of the coupling points. One ¢ has the constant value — 1y for
all z, but it is now the other value of ¢ which applies to the wave, and has the resonance. Budden &
Smith (1974) showed that for an isolated coalescence G2 there should be no reflected wave. Here
there is some reflexion (139) because the coalescence is not sufficiently isolated. Its behaviour is
modified by the proximity of the resonance.

(ii) Waves incident from direction of positive z
Instead of the first equations (126), (128) take
£ = —2ikyz, «=+%ikv/y. (140)

If these, with (125), are substituted in (124) there results an equation the same as (127) except

that ¢ is replaced by £. One solution is
h =W m(E)- (141)

42 Vol. 290. A.
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When z is large and positive, arg£ = — 4n and the asymptotic form, (Whittaker & Watson 1933,

p. 343) gives B~ e—begx (142)
gy ~ exp {ikyz — 3ik(Sw —v/y) Inz + 3ik(v/y) In (2ky) + inkv/y}. (143)

This is an incoming wave, the incident wave. There is no other term and therefore no reflected
wave. When z is large and negative, arg§ = + }n and the asymptotic form is still (142), whence

gy ~ exp {ikyz — §k(Sw —v/y) In|z| + §ik(v/y) In (2ky) + inkSw — Inkv/y}. (144)

This is an outgoing wave, the transmitted wave. The ratio of the moduli of (144) to (143) gives
the modulus of the transmission coefficient

|T| = exp {3mk(Sw—v/7)}. (145)

If § = 0, this agrees with R.w.i., (21.82).

If (138) is true, which is only possible for real § when (113) is discarded, (145) gives |T'| = 1.
One ¢ has the constant value —y for all z, and | T"| refers to this wave. It is unaffected by the
other ¢ which is the one that has the resonance. This is another example of coalescence C2 of the
coupling points.

The foregoing treatment is similar to that in R.w.i., §21.15, but the degeneracy has been
removed. The reflexion and transmission coefficients (133), (135) and (145) apply both for
obliquely incident and normally incident waves.

13. WHAT HAPPENS TO THE LOST ENERGY?

The question of what happens to the wave energy that disappears near a resonance is an
intriguing physical problem. At least three different view points may be taken.

First it may be argued that the assumption of a loss free medium is unrealistic. There is no
medium, except for a vacuum, from which all forms of wave attenuation are absent. Therefore
the refractive index  always has a non-zero imaginary part when s = £z is real. In a plasma this
could be caused by collision damping, Landau damping or other forms of damping. Im () may
be negligibly small for most real values of z. But the pole at the resonance is not exactly on the
real z axis. Near it both real and imaginary parts of u are very large, so that the energy absorption
rate is large. The lost energy is simply converted to heat or other forms of energy in the region of
the real z axis close to the pole. In this paper nonlinear effects have been ignored. The solutions
for E,, E,, proportional to (33) are bounded near the resonance, so that for these components,
the assumption may be justified for small wave amplitudes. But (25) shows that E, is not bounded
at the resonance. Thus non-linear effects must occur. One result would be the generation of
harmonics of the wave frequency. This provides another way by which wave energy could be
lost.

Second, the illustrations in this paper apply for a cold plasma whose dielectric constant is
given by (3). If the plasma is warm its dielectric constant is not given exactly by (3). The result
is that when ¢,, approaches zero, one refractive index gets very large, but it does not become
infinite when ¢,, = 0. Instead, the characteristics of the wave go over continuously to those of a
plasma wave. Curves showing how this happens have been given by Ginzburg (1970, Figs 12.2—
12.4,12.9-12.13) and the subject has been studied by Stix (1965). On this view the resonance does
not exist. The waves have simply gone over to a mode of propagation governed by a modification
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of the basic equation, and they carry the ‘lost’ energy with them. This is not a mode conversion.
The transition is continuous and it is only the name of the wave type that changes. There can be
mode conversion near the transition, but this is a separate phenomenon associated with a coupling
point.

If either of these views is taken, the lost energy can be accounted for and there is nothing more
to be said. But it is still of interest to pursue the enquiry for a fictitious medium which is a cold
plasma and really has no damping mechanism at all. The following suggestion is offered. In any
wave system some energy is stored in the medium. The time average of the stored energy per
unit volume is constant in the steady state conditions assumed here, and is proportional to the
dielectric constant and to the square of the electric field. Near a resonance at z = 0 the dielectric
constant (3) is bounded, but (25) shows that E, tends to infinity like 1/z. Consequently if the
stored energy is integrated through a volume near the resonance, the integral gets indefinitely
large as the edge of the volume moves up to the resonance. The total energy stored in the part of
the medium containing the resonance is infinite. But this state of affairs cannot be attained in a
finite time. After the wave is first switched on, a state of physical equilibrium is never reached.
The medium has an infinite capacity for storing energy. The energy that is apparently lost is
simply going into storage in the medium.

14. CONCGLUSIONS

This paper has attempted to study the physical processes that occur for a wave system in a
medium containing a resonance: that is, an infinity of one of the refractive indices. The waves are
assumed to be of small amplitude so that nonlinear effects can be ignored. In a slowly varying
medium the characteristic waves are independently propagated at most points, but this is not
true at coupling points. The behaviour of waves near a coupling point, or near two adjacent
coupling points is already well understood. It is found to be modified if there is a resonance
nearby.

Propagation in a stratified system is conveniently described in terms of the variable ¢, (79) and
(83). Near anideal isolated coupling point (¢, — ¢,)?is a linear function of zand the wave fields can
be expressed in terms of an Airy integral, Ai (Kz), where K is a constant. If (¢, — ¢,)2is not exactly
linear it can be used to define a new variable { which is a monotonic function of z, and the fields
can be expressed in terms of Ai({). This is the principle of uniform approximation. The Airy
integral is used as a comparison function. If two coupling points, for the same two characteristic
waves, are close together, (¢, —¢,)? is close to a quadratic function of z, and the required com-
parison function is a Weber function (Rydbeck 1943; Budden & Smith 1974). This paper has
considered a domain containing one or two such coupling points and a resonance at which one
of gy, ¢, is infinite. If this domain is well enough isolated from other coupling points and resonances
involving ¢,, ¢,, then ¢, and ¢, are the roots of a quadratic equation (109) or (112). In these
examples the coefficients in the quadratic are linear functions of z. In practical cases the z
dependence would not be exactly linear and z would have to be replaced by ¢, a monotonic
function of z. For a single coupling point and a resonance, the fields are expressed in terms of a
Bessel function of complex order which would supply the comparison function. For two coupling
points forming a barrier, with a resonance nearby, the comparison function is a Whittaker
function.

It is not likely that the full uniform approximations in these cases will ever need to be worked

42-2
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out, since they would be very complicated. Complete solutions can be computed much more
simply by using the basic equations, (14). But it is useful to know what the comparison functions
are, because it is their properties, particularly their asymptotic properties, that are linked with
the physics of the wave propagation.

APPENDIX

This paper has used eigen columns §; of the matrix T (6) with eigen values ¢;. The form of s;
used in § 9 onwards is given below. It contains elements of the dielectric constant tensor g, (3), and
also its principal axis components €;, €,, €5, Let

ke
|

= Im{}es(€, +65) — €165} +iney D,

ke
I

Yes(e, +6y) (m?— 1) —m?e, €5+ 536,
K; = mn{e;(e, +€,) — €, 65} —ileg D — 8, Sy6,, — 536,
In the following expression ¢ may take any of the four values ¢;. The four elements of s; are
¢2818 + q(S1 6,y +€564,) — Ky — €, 85 + (834 53) (€4 +5153),
?(6,,—5%) — 248, In G+ Ky + (534 52) (€4, —53),
0%+ q* (8565, — 28, In G) + q(Ky 4 St €4y +5152€4y) —S2 K,
2856, — ¢{ Ky + 518, G (12 — n?) — S%e,,} +5, K.

It can be checked that, in the special case S, = 0 and for a cold plasma with electrons only, these
expressions are proportional to those used by Budden & Clemmow (1957) and in R.w.i. (18.61).
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